Heuristic Search for m Best Solutions with Applications to Graphical Models
نویسندگان
چکیده
The paper focuses on finding the m best solutions to a combinatorial optimization problems using Best-First or Branch-and-Bound search. We are interested in graphical model optimization tasks (e.g., Weighted CSP), which can be formulated as finding the m-best solutionpaths in a weighted search graph. Specifically, we present m-A*, extending the well-known A* to the m-best problem, and prove that all A*’s properties are maintained, including soundness and completeness of mA*, dominance with respect to improved heuristics and most significantly optimal efficiency compared with any other search algorithm that use the same heuristic function. We also present and analyse m-B&B, an extension of a Depth First Branch and Bound algorithm to the task of finding the m best solutions. Finally, for graphical models, a hybrid of A* and a variable-elimination scheme yields an algorithm which has the best complexity bound compared with earlier known m-best algorithms.
منابع مشابه
Search Algorithms for m Best Solutions for Graphical Models
The paper focuses on finding the m best solutions to combinatorial optimization problems using Best-First or Branchand-Bound search. Specifically, we present m-A*, extending the well-known A* to the m-best task, and prove that all its desirable properties, including soundness, completeness and optimal efficiency, are maintained. Since Best-First algorithms have memory problems, we also extend t...
متن کاملM best solutions over Graphical Models
Bucket elimination is an algorithmic framework that generalizes dynamic programming to accommodate many problem-solving and reasoning tasks. In particular, it can be used for any combinatorial optimization task such as finding most probable configurations in a Bayesian network. In this paper we present a new algorithm elim-m-opt, extending bucket elimination for the task of finding m best solut...
متن کاملWeighted Best-First Search for W-Optimal Solutions over Graphical Models
The paper explores the potential of weighted best-first search schemes as anytime optimization algorithms for solving graphical models tasks such as MPE (Most Probable Explanation) or MAP (Maximum a Posteriori) and WCSP (Weighted Constraint Satisfaction Problem). While such schemes were widely investigated for path-finding tasks, their application for graphical models was largely ignored, possi...
متن کاملSubproblem ordering heuristics for AND/OR best-first search
Best-first search can be regarded as anytime scheme for producing lower bounds on the optimal solution, a characteristic that is mostly overlooked. We explore this topic in the context of AND/OR best-first search, guided by the MBE heuristic, when solving graphical models. In that context, the impact of the secondary heuristic for subproblem ordering may be significant, especially in the anytim...
متن کاملWeighted anytime search: new schemes for optimization over graphical models
Weighted search (best-first or depth-first) refers to search with a heuristic function multiplied by a constant w [Pohl (1970)]. The paper shows for the first time that for graphical models optimization queries weighted best-first and weighted depth-first Branch and Bound search schemes are competitive energy-minimization anytime optimization algorithms. Weighted best-first schemes were investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011